NCERT Class 12 maths Misc. ex. ch. 10 Q. 1. Solution

NCERT Class 12 maths Misc. ex. ch. 10
Source: Canva

Free NCERT Class 12 maths Miscellaneous Ex. Chapter 10 Solution PDF Download

Q.1. NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{1. Write down a unit vector in XY-plane, making an angle of }30^\circ
\text{ with the positive direction of x-axis}
$$

$$
\text{The unit vector in XY plane is} \

\begin{aligned}
&\text { The unit vector in } \mathrm{XY} \text { plane is } \cos 30 \mathrm{i}+\cos 60^0 j\
&=\frac{\sqrt{3}}{2} \hat{i}+\frac{1}{2} \hat{j}
\end{aligned}

Q.2. NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{2. Find the scalar components and magnitude of the vector joining the points }
P(x_1, y_1, z_1)\ \text{and}\ Q(x_2, y_2, z_2).
$$

$$
\text{Solution: Scalar components: }(x_2 – x_1),\ (y_2 – y_1),\ (z_2 – z_1)
$$

$$
\text{Vector Component: }(x_2 – x_1)\mathbf{i} + (y_2 – y_1)\mathbf{j} + (z_2 – z_1)\mathbf{k}
$$

Q.3. NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{3. A girl walks 4 km towards the west, then she walks 3 km in a direction }
30^\circ\ \text{east of north and stops. Determine the girl’s displacement.}
$$

$$
\text{Solution:}
$$

$$
\text{To find: Displacement}
$$

$$
\begin{aligned}
&\overrightarrow{AB} \
&\overrightarrow{OA} = 4(\cos 0^\circ\, \mathbf{i} + \cos 90^\circ\, \mathbf{j}) \\
&\overrightarrow{OA} = 4\mathbf{i} \\
&\overrightarrow{OB} = 3(\cos 60^\circ\, \mathbf{i} + \cos 30^\circ\, \mathbf{j}) \\
&\overrightarrow{OB} = \frac{3}{2}\mathbf{i} + \frac{3\sqrt{3}}{2}\mathbf{j} \\
&\overrightarrow{AB} = \overrightarrow{OB} – \overrightarrow{OA} \\
&\overrightarrow{AB} = \left(\frac{3}{2} – 4\right)\mathbf{i} + \frac{3\sqrt{3}}{2}\mathbf{j} \\
&\overrightarrow{AB} = \left(-\frac{5}{2}\right)\mathbf{i} + \frac{3\sqrt{3}}{2}\mathbf{j}
\end{aligned}
$$

YOU MAY ALSO LIKE👇

1. NCERT Maths Ch 6 Misc. Ex. solution. 2. Free NCERT Class 12 Maths Miscellaneous Ex. Ch 7 Solution

Q.4. NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{Q.4. } \text{If } \vec{a} = \vec{b} + \vec{c} \text{ then is it true that } |\vec{a}| = |\vec{b}| + |\vec{c}|? \text{ Justify your answer.}
$$

$$
\text{Solution: } |\vec{a}| = |\vec{b} + \vec{c}| \
|\vec{a}| \neq |\vec{b}| + |\vec{c}| \
\text{Hence, the given statement is not true.}
$$

NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{Q.5. Find the value of } x \text{ for which } x(\mathbf{i}+\mathbf{j}+\mathbf{k}) \text{ is a unit vector.}
$$

$$
\text{Let } \vec{a} = \mathbf{i} + \mathbf{j} + \mathbf{k} \
|\vec{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3} \
\text{Unit vector } = \frac{\vec{a}}{|\vec{a}|} = \frac{1}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k})
$$

$$
x(\mathbf{i}+\mathbf{j}+\mathbf{k}) = \frac{1}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k}) \
\Rightarrow x = \frac{1}{\sqrt{3}}
$$

Q.6. NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{Q.6. Find a vector of magnitude 5 units and parallel to the resultant of } \
\vec{a}=2\mathbf{i}+3\mathbf{j}-\mathbf{k},\quad \vec{b}=\mathbf{i}-2\mathbf{j}+\mathbf{k}.
$$

$$
\text{Resultant } \vec{r} = \vec{a} + \vec{b} \
\vec{r} = (2\mathbf{i}+3\mathbf{j}-\mathbf{k}) + (\mathbf{i}-2\mathbf{j}+\mathbf{k}) \
\vec{r} = 3\mathbf{i} + \mathbf{j}
$$

$$
|\vec{r}| = \sqrt{3^2 + 1^2} = \sqrt{10}
$$

$$
\text{Required vector} = 5 \cdot \frac{\vec{r}}{|\vec{r}|}
= 5 \cdot \frac{3\mathbf{i}+\mathbf{j}}{\sqrt{10}}
$$

$$
= \frac{15}{\sqrt{10}}\mathbf{i} + \frac{5}{\sqrt{10}}\mathbf{j}
= \frac{3\sqrt{10}}{2}\mathbf{i} + \frac{\sqrt{10}}{2}\mathbf{j}
$$

Q. 7. NCERT Class 12 maths Misc. ex. ch. 10

Q. 7. If , find a unit vector parallel to the vector

Solution:

Now unit vector parallel to this vector

NCERT Misc. Ex. ch 10  solution

Q.8. NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{Q.8. Show that the points } A(1,-2,-8),\; B(5,0,-2),\; C(11,3,7) \text{ are collinear.}
$$

$$
\vec{AB} = (5-1)\mathbf{i} + (0+2)\mathbf{j} + (-2+8)\mathbf{k}
= 4\mathbf{i} + 2\mathbf{j} + 6\mathbf{k}
$$

$$
\vec{BC} = (11-5)\mathbf{i} + (3-0)\mathbf{j} + (7+2)\mathbf{k}
= 6\mathbf{i} + 3\mathbf{j} + 9\mathbf{k}
$$

$$
\frac{4}{6} = \frac{2}{3} = \frac{6}{9} \
\Rightarrow A, B, C \text{ are collinear.}
$$

$$
\text{Ratio in which B divides AC} = \frac{2}{3}
$$

Q. 9. NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{Q.9. Position vector of point R dividing PQ externally in the ratio }1:2, \
\vec{OP} = 2\vec{a}+\vec{b},\; \vec{OQ} = 3\vec{a}-\vec{b}.
$$

$$
\vec{OR} = \frac{1\cdot\vec{OQ} – 2\cdot\vec{OP}}{1-2}
$$

$$
= \frac{(3\vec{a}-\vec{b}) – 2(2\vec{a}+\vec{b})}{-1}
$$

$$
= \frac{3\vec{a}-\vec{b}-4\vec{a}-2\vec{b}}{-1}
= \vec{a} + 3\vec{b}
$$

$$
\text{Check if P is midpoint of RQ: } \
\vec{OP} = \frac{\vec{OR} + \vec{OQ}}{2}
$$

$$
\frac{(\vec{a}+3\vec{b}) + (3\vec{a}-\vec{b})}{2}
= \frac{4\vec{a} + 2\vec{b}}{2}
= 2\vec{a} + \vec{b}
$$

$$
\text{Hence proved.}
$$

NCERT Class 12 maths Misc. ex. ch. 10 Q. 1. Solution

Q.10. NCERT Class 12 maths Misc. ex. ch. 10

$$
\textbf{Q.10. Adjacent sides of a parallelogram are } \vec{a}=2\mathbf{i}-4\mathbf{j}+5\mathbf{k},\;
\vec{b}=\mathbf{i}-2\mathbf{j}-3\mathbf{k}. \
\text{Find unit vector parallel to diagonal and its area.}
$$

Solution:
Area of a parallelogram is the magnitude of Cross (Vector) Product of adjacent sides.
Let
Then area of the parallelogram

$$
= \mathbf{i}(12 – (-10)) – \mathbf{j}(-6 – 5) + \mathbf{k}(-4 + 4)
$$

$$
= 22\mathbf{i} + 11\mathbf{j}
$$

$$
|\vec{a} \times \vec{b}|
= \sqrt{22^2 + 11^2}
= \sqrt{484 + 121}
= \sqrt{605}
$$

Q. 11. NCERT Class 12 maths Misc. ex. ch. 10

Q.11. Show that the direction cosines of a vector equally inclined to OX, OY and OZ are 1/sqrt3, 1/sqrt3, 1/sqrt3.

Let the direction cosines be $\cos\alpha, \cos\beta, \cos\gamma$.

Since they are equally inclined:

$$
\cos\alpha = \cos\beta = \cos\gamma
$$

Using the identity:

$$
\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1
$$

So,

$$
3\cos^2\alpha = 1
$$

$$
\cos^2\alpha = \frac{1}{3}
$$

$$
\cos\alpha = \pm\frac{1}{\sqrt{3}}
$$

Therefore the direction cosines are:

$$
\frac{1}{\sqrt{3}},\ \frac{1}{\sqrt{3}},\ \frac{1}{\sqrt{3}}
$$

Q. 12.NCERT Class 12 maths Misc. ex. ch. 10

Q. 12. Let . Find a vector  which is perpendicular to both  and and.
Solution:
Since is perpendicular to both  and .
Therefore,

Now, .

Therefore,

Q. 13. NCERT Class 12 maths Misc. ex. ch. 10

Q. 13. The scalar product of the vector i+j+k with a unit vector along the sum of vectors 2i+4j-5k and i+2j+3k is equal to one. Find the value of λ.

Solution:

The sum of vectors  and

∴ unit vector
Now dot Product with

Now, .

Therefore,

Q. 14. NCERT Class 12 maths Misc. ex. ch. 10

  1. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes,
    show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined with $\vec{a}, \vec{b}$, and $\vec{c}$.

Solution: We have $|\vec{a}| = |\vec{b}| = |\vec{c}|$ and
$\vec{a}\cdot\vec{b} = \vec{b}\cdot\vec{c} = \vec{c}\cdot\vec{a} = 0$ as they are mutually perpendicular.

Let the angles between $\vec{a}+\vec{b}+\vec{c}$ and $\vec{a}, \vec{b}, \vec{c}$ be
$\alpha, \beta$, and $\gamma$, respectively.

$$
\cos\alpha
= \frac{\vec{a}\cdot(\vec{a}+\vec{b}+\vec{c})}{|\vec{a}|\,|\vec{a}+\vec{b}+\vec{c}|}
$$

$$
= \frac{\vec{a}\cdot\vec{a} + \vec{a}\cdot\vec{b} + \vec{a}\cdot\vec{c}}{|\vec{a}|\,|\vec{a}+\vec{b}+\vec{c}|}
$$

$$
= \frac{|\vec{a}|^2 + 0 + 0}{|\vec{a}|\,|\vec{a}+\vec{b}+\vec{c}|}
= \frac{|\vec{a}|} {|\vec{a}+\vec{b}+\vec{c}|}
$$

Similarly, we can show:

$$
\cos\beta = \frac{|\vec{b}|}{|\vec{a}+\vec{b}+\vec{c}|},\qquad
\cos\gamma = \frac{|\vec{c}|}{|\vec{a}+\vec{b}+\vec{c}|}
$$

$$
\text{But }|\vec{a}| = |\vec{b}| = |\vec{c}|
$$

$$
\therefore\ \cos\alpha = \cos\beta = \cos\gamma
$$

$$
\Longrightarrow\ \alpha = \beta = \gamma
$$

$$
\text{Hence, }(\vec{a}+\vec{b}+\vec{c})\text{ is equally inclined with }\vec{a},\ \vec{b},\ \vec{c}.
$$

$$
\text{Proved.}
$$

Q. 15. NCERT Class 12 maths Misc. ex. ch. 10

$$
\text{Q. 15. Prove that } (\vec{a}+\vec{b})\cdot(\vec{a}+\vec{b}) = |\vec{a}|^{2} + |\vec{b}|^{2}
\text{ if and only if }\vec{a}\perp\vec{b},\ \vec{a}\neq 0,\ \vec{b}\neq 0.
$$

Solution:

$$
(\vec{a}+\vec{b})\cdot(\vec{a}+\vec{b})
$$

$$
= \vec{a}\cdot\vec{a} + \vec{a}\cdot\vec{b} + \vec{b}\cdot\vec{a} + \vec{b}\cdot\vec{b}
$$

$$
= |\vec{a}|^{2} + 0 + 0 + |\vec{b}|^{2}
$$

$$
= |\vec{a}|^{2} + |\vec{b}|^{2}
$$

$$
\text{Proved.}
$$

Q.16. Maths Class 12 Misc Ex Ch 10 soltuon

If $latex \theta$ is the angle between two vectors $latex \vec{a}$ and $latex \vec{b}$, then
$latex \vec{a}\cdot\vec{b} \ge 0$ only when:

(A) $latex 0 < \theta < \frac{\pi}{2}$
(B) $latex 0 \le \theta \le \frac{\pi}{2}$
(C) $latex 0 < \theta < \pi$
(D) $latex 0 \le \theta \le \pi$

Solution:

\[
\cos\theta = \frac{\vec{a}\cdot\vec{b}}{\lvert \vec{a} \rvert, \lvert \vec{b} \rvert}
\]

If $latex \vec{a}\cdot\vec{b} \ge 0$, then $latex \cos\theta \ge 0$.

\[
0 \le \theta \le \frac{\pi}{2}
\]

Ans. (B)

Q. 17. NCERT misc ex ch 10 class 12 maths solution

Q.17. Let ( \vec{a} ) and ( \vec{b} ) be two unit vectors and ( \theta ) is the angle between them.
Then ( \vec{a} + \vec{b} ) will be a unit vector if

(A) ( \theta = \pi/4 )
(B) ( \theta = \pi/3 )
(C) ( \theta = \pi/2 )
(D) ( \theta = 2\pi/3 )

Solution:

$$
|\vec{a} + \vec{b}|^{2}
= |\vec{a}|^{2} + |\vec{b}|^{2} + 2|\vec{a}||\vec{b}|\cos\theta
$$

$$
|\vec{a}| = |\vec{b}| = 1
$$

$$
\Rightarrow 1 = 1 + 1 + 2\cos\theta
$$

$$
\Rightarrow \cos\theta = -\frac{1}{2} \Rightarrow \theta = \frac{2\pi}{3}
\quad \text{Ans. (D)}
$$


Q.18. NCERT Solution Class 12 Maths Misc. Ex. Ch-10

The value of

\[
\vec{i}\cdot(\vec{j}\times\vec{k}) +
\vec{j}\cdot(\vec{i}\times\vec{k}) +
\vec{k}\cdot(\vec{i}\times\vec{j})
\]

is:

(A) $latex 0$
(B) $latex -1$
(C) $latex 1$
(D) $latex 3$

Solution:

\[
\vec{j}\times\vec{k}=\vec{i},\quad
\vec{k}\times\vec{i}=\vec{j},\quad
\vec{i}\times\vec{j}=\vec{k}
\]\[
\vec{i}\cdot\vec{i}

  • \vec{j}\cdot\vec{j}

  • \vec{k}\cdot\vec{k}
    = 1 + 1 + 1 = 3
    \]

    Ans. (C)

    Q. 19. NCERT Solution Class 12 Maths Misc. Ex. Ch-10

    Q.19. If ( \theta ) is the angle between any two vectors ( \vec{a} ) and ( \vec{b} ),
    then ( \vec{a} \cdot \vec{b} = \vec{a} \times \vec{b} ) when ( \theta ) is equal to

    (A) ( 0 )
    (B) ( \pi/4 )
    (C) ( \pi/2 )
    (D) ( \pi )

    Solution:

    We have,

    $$
    \vec{a} \cdot \vec{b} = a b \cos\theta
    $$

    $$
    \vec{a} \times \vec{b} = a b \sin\theta
    $$

    $$
    ab\cos\theta = ab\sin\theta
    $$

    $$
    \cos\theta = \sin\theta
    $$

    $$
    \theta = \pi/4
    $$

    Ans. (B).

Scroll to Top