NCERT, Class 12, Maths, Chapter 6, Misc. Ex. Solution

Q.1. Solution: NCERT Maths Ch 6 Misc. Ex. solution.


Q.1. Show that the function given by f(x) = logx/x has a maximum at x = e.

NCERT Maths Ch 6 Misc. Ex. solution.

Q.2. NCERT Maths Ch 6 Misc. Ex. solution.

Q. 2. The two equal sides of an isosceles triangle with fixed base ‘b’ are decreasing at the rate of 3 cm per second. How fast is the area decreasing when the two equal sides are equal to the base ?

Let $A B=A C=x \mathrm{~cm}$

$$
\frac{d x}{d t}=3 \mathrm{~cm} / \mathrm{sec}
$$

To find $\frac{d A}{d t}$

$$
\begin{aligned}
& B D=D C=\frac{b}{2} \
& A B^{2}=A D^{2}+B D^{2} \
& x^{2}=A D^{2}+\left(\frac{b}{2}\right)^{2} \
& x^{2}-\frac{b^{2}}{4}=A D^{2} \
& \Rightarrow A D=\sqrt{x^{2}-\frac{b^{2}}{4}}
\end{aligned}
$$

Area of $\triangle A B C=\frac{1}{2} \times B C \times A D$

$$
\begin{aligned}
& A=\frac{1}{2} \times b \sqrt{x^{2}-\frac{b^{2}}{4}} \
& A=\frac{1}{2} \times b \frac{\sqrt{4 x^{2}-b^{2}}}{2} \
& A=\frac{1}{4} b \sqrt{4 x^{2}-b^{2}} \
& \frac{d A}{1}=\frac{1}{4} b \cdot \frac{1}{2 \sqrt{4 x^{2}-b^{2}}} \times \frac{d x}{d t}
\end{aligned}
$$

$$
\begin{aligned}
\frac{d A}{d t} & =\frac{1}{4} b \cdot \frac{1}{2 \sqrt{4 x^{2}-b^{2}}} \cdot \frac{4 n}{d t} \
\frac{d A}{d t} & =\frac{b x}{\sqrt{4 x^{2}-b^{2}}} \cdot \frac{d n}{d t} \
\left(\frac{d A}{d t}\right)_{x=b} & =\frac{b^{2}}{\sqrt{3} b} \cdot 3 \
& =\sqrt{3} b \mathrm{~cm}^{2} / \mathrm{sec} \cdot
\end{aligned}
$$

NCERT Maths Ch 6 Misc. Ex. solution.

Q.3. Find the intervals in which function f given by

$$
f(x)=\frac{4 \sin x-2 x-x \cos x}{2+\cos x} \text { is }
$$

(i) increasing
(ii) decreasing.

Solution:

$$
\begin{aligned}
f(x) & =\frac{4 \sin x-x(2+\cos x)}{2+\cos x} \
f(x) & =\frac{4 \sin x}{2+\cos x}-x \
f^{\prime}(x) & =\frac{(2+\cos x) 4 \cos x-4 \sin x(0-\sin x)}{(2+\cos x)^{2}}-1 \
& =\frac{8 \cos x+4 \cos ^{2} x+4 \sin ^{2} x}{(2+\cos x)^{2}}-1 \
& =\frac{8(\cos x+4}{(2+\cos x)^{2}}-1
\end{aligned}
$$

$$
\begin{aligned}
&= \frac{8 \cos x+4-\left(4+\cos ^{2} x+4 \cos x\right)}{(2+\cos x)^{2}} \
&= \frac{8 \cos x-4 \cos x-\cos ^{2} x}{(2+\cos x)^{2}} \
&= \frac{4 \cos x-\cos ^{2} x}{(2+\cos x)^{2}} \
& f^{\prime}(x)= \frac{\cos x(4-\cos x)}{(2+\cos x)^{2}}=0 \
& \Rightarrow \cos x=0 \quad 4-\cos x=0 \
& \Rightarrow \quad x=\frac{\pi}{2} \quad \Rightarrow \quad \cos x=4
\end{aligned}
$$



$ f(x) \text{ is increasing in } \left(0, \frac{\pi}{2}\right) \text{ and } \left(\frac{3\pi}{2}, 2\pi\right).
$

NCERT Maths Ch 6 Misc. Ex. solution. Q. 4.

NCERT Class 12 Maths Chapter 6, Miscellaneous Ex Q. 4 Solution. To find the intervals in which funtion is increasing or decreasing.

Also See👉Solution for NCERT Misc. EX. Ch. 7 (INTEGRALS)

Q. 5. Find the maximum area of an isosceles triangle inscribed in the ellipse


In triangle ABC:

OA = a
OD = x
BC = 2y

From the ellipse,
( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 )

Area of the triangle is:

$$
A = \frac{1}{2} \cdot BC \cdot AD
= \frac{1}{2} \cdot 2y \cdot (a+x)
$$

From the ellipse,
$$
\frac{y^2}{b^2} = 1 – \frac{x^2}{a^2}
$$

So,
$$
y = \frac{b}{a} \sqrt{a^2 – x^2}
$$

Thus the area becomes:
$$
A = \frac{b}{a} \sqrt{a^2 – x^2}\,(a+x)
$$

Differentiate:
$$
\frac{dA}{dx}
= \frac{b}{a}
\left[
\frac{-x(a+x)}{\sqrt{a^2-x^2}} + \sqrt{a^2-x^2}
\right]
$$

Set derivative = 0:
$$
\frac{-x(a+x)}{\sqrt{a^2-x^2}} + \sqrt{a^2-x^2} = 0
$$

Solve:
$$
\sqrt{a^2-x^2} \left( 1 – \frac{x(a+x)}{a^2-x^2} \right)=0
$$

This gives:
$$
a^2 – x^2 = x(a+x)
$$

Simplifying:
$$
a^2 – x^2 = ax + x^2
$$

$$
a^2 = ax + 2x^2
$$

$$
2x^2 + ax – a^2 = 0
$$

Solve for x:
$$
x = \frac{-a + \sqrt{a^2 + 8a^2}}{4}
$$

$$
x = \frac{-a + 3a}{4} = \frac{a}{2}
$$

Now compute maximum area:
$$
y = \frac{b}{a} \sqrt{a^2 – \left(\frac{a}{2}\right)^2}
= \frac{b}{a} \cdot \frac{\sqrt{3}}{2}a
= \frac{\sqrt{3}}{2}\,b
$$

Finally:
$$
A_{\max} = y(a+x)
= \frac{\sqrt{3}}{2} b \left(a + \frac{a}{2}\right)
$$

$$
A_{\max} = \frac{3\sqrt{3}}{4}\,ab
$$

See Latest Posts
  • Free NCERT Class 12 Maths Ch 5 Misc Ex. Solution

    Free NCERT Class 12 Maths Ch 5 Misc Ex. Solution

    NCERT Class 12 Maths Ch 5 Misc. Ex. Solution Q.1. NCERT Class 12 Maths Ch 5 Misc. Ex. Solution \begin{array}{l}Q.1.\ \left( 3x^{2} -9x+5\right)^{9}\\Solution:\ \\y=\left( 3x^{2} -9x+5\right)^{9}\\Differentiate\ w.r.t.\ x.\\\frac{dy}{dx} =\frac{d\left( 3x^{2} -9x+5\right)^{9}}{dx}\\=9\left( 3x^{2} -9x+5\right)^{8}\frac{d\left( 3x^{2} -9x+5\right)}{dx}\\=9\left( 3x^{2} -9x+5\right)^{8}( 6x-9)\\=9\left( 3x^{2} -9x+5\right)^{8} 3( 2x-3)\\=27\left( 3x^{2} -9x+5\right)( 2x-3) \ Ans.\end{array} Q.2. NCERT Class 12 Maths Ch 5 Misc.…


  • NCERT Class 12 Maths Miscellaneous Exercise Solutions (All Chapters)

    NCERT Class 12 Maths Miscellaneous Exercise Solutions (All Chapters)

    NCERT Class 12 Maths Chapter-wise Solutions Importance of NCERT Class 12 Maths Miscellaneous Exercise The NCERT Miscellaneous exercise is not just a revision exercise; this exercise is most important for students for the preparation of board exams because it includes the concept of the whole chapter, and the entire chapter’s concepts are mixed into it.…


  • Free NCERT Class 12 maths Chapter 2 Miscellaneous Exercise Solution

    Free NCERT Class 12 maths Chapter 2 Miscellaneous Exercise Solution

    Introduction to Chapter 2: Inverse Trigonometric Functions NCERT Class 12 Maths Chapter 2 Miscellaneous Exercise Solution lays the foundation of Mathematics. This chapter covers basic introduction of inverse functions of Trigonometry such as Sine, Cosine and tangent in the Trigonometry along with their properties and domain and range. Studying this is quite important for understanding…


Q. 6. NCERT class 12 maths ch 6 miscellaneous ex. solution

Q. 6. A tank with rectangular base and rectangular sides, open at the top, is to be
constructed so that its depth is 2 m and volume is 8 m³
If building of tank costs Rs 70 per sq meter for the base and Rs 45 per square meter for the sides. What is
the cost of the least expensive tank?

Solution: Volume of the tank \( =l b h \)

⇒8=lb(2) ⇒lb=4 ⇒b=\frac{4}{l}\\​

\ Now, for\ the\ rectangular\ tank\ to\ be\ least\ expensive, the\ area\ of\ the\ tank\ must\ be\ minimum.\\

Area: A=Area\ of\ base+Area\ of\ 4\ walls\\

Base area: lb

Now, for the rectangular tank to be least expensive, the area of the tank must be minimum.

Area: A=Area of base+Area of 4 walls A = \text{Area of base} + \text{Area of 4 walls} A=Area of base+Area of 4 walls

Base area: lblblb

Wall area: 2h(l+b) 2h(l + b) 2h(l+b)

Thus, A=lb+2h(l+b) A = lb + 2h(l + b) A=lb+2h(l+b)

Total cost of the tank= Cost of the base + cost of 4 walls.

Cost = Area*Per unit cost

C=70×4+45×4(45)(l+4/l)

C=280 + 180(l+4/l)

\dc/dl=0+180(1-4/l^2)

\dc/dl=180(1-4/l^2)

For the least expensive tank, dc/dl=0.

1=4/l^2

l^2=4

l=2 m

\d^2c/dl^2=180×8/l^2 >0

Therefore, cost is minimum when l=4m.

Total Cost = 280+180(4)=Rs. 1000 [Put l=2 m]

Q. 7. NCERT Maths Ch 6 Misc. Ex. solution.

Q. 7. The sum of the perimeter of a circle and square is k, where k is some constant.
Prove that the sum of their areas is least when the side of square is double the
radius of the circle

NCERT Class 12 Maths Chapter 6, Miscellaneous Ex Q. 7 Solution. The sum of perimeters of a circle and a square is given as k and to shhow the sum of areas is maximum when side of the square is double the radius.

Q. 8. NCERT Maths Ch 6 Misc. Ex. solution.

NCERT Maths Ch 6 Misc. Ex. Q. 8 solution. The dimensions of the window to be determined so that it gets maximum light through it.

Q.9. NCERT Maths Ch 6 Misc. Ex. solution.

Q.9. A point on the hypotenuse of a triangle is at distance a and b from the sides of
the triangle. Show that the minimum length of the hypotenuse is

NCERT Maths Ch 6 Misc. Ex. Q. 9 solution.  To show the minimum length of hypotaneous.
Demonstrating the NCERT Maths Ch 6 Misc. Ex. solution.

Q. 10. NCERT Maths Ch 6 Misc. Ex. solution.

10. Find the points at which the function f given by f (x) = (x – 2)^4(x + 1)^3
has
(i) local maxima (ii) local minima
(iii) point of inflection


soln
[
\begin{aligned}
f(x) & =(x-2)^4(x+1)^3 \\
f^{\prime}(x) & =(x-2)^4 \frac{d}{d x}(x+1)^3+(x+1)^3 \frac{d}{d x}(x-2)^4 \\
& =(x-2)^4 \cdot 3(x+1)^2+(x+1)^3 4(x-2)^3(1) \\
& =(x-2)^3(x+1)^2[3(x-2)+4(x+1)] \\
& =(x-2)^3(x+1)^2(3 x-6+4 x+4) \\
& =(x-2)^3(x+1)^2(7 x-2)
\end{aligned}
]

Since, the sign of f'(x) is changing from +ve to -ve at x=2/7. Hence, f(x) is maximum at x=2/7. It is changing -ve to +ve at x=2. Therefore, it is minimum at x=2. There is no change in singn at x=-1. Therefore, x=-1 is point of inflexion.

Q. 11. NCERT Maths Ch 6 Misc. Ex. solution.

NCERT Maths Ch 6 Misc. Ex. Q. 11 solution. To find absolute maximum and minimum values of function f.

Q. 12. NCERT Solution

Q. 13. Solution: Ncert maths Class 12

Q. 14. Solution: Ncert maths Class 12

Q. 15. Solution: Ncert maths Class 12

Q. 16. NCERT class 12 maths ch 6 miscellaneous ex. solution

Scroll to Top